Security Controls and Best Practices for Financial Institutions
Overview

The intent of this document is to inform Financial Institutions about the online fraud threats they currently face. For each threat we discuss, we will provide some basic guidance about an available control that could mitigate the threat. This guidance represents a starting point for improving security.

Digital Insight strongly recommends that you review your current security plans and policies, make any updates necessary, and communicate improvements to your customers or members.
The Threat Landscape and Compliance

In order to commit online fraud, a fraudster simply needs to authenticate as the victim, using that victim’s online credentials.

For environments that rely on Single Factor Authentication (something the user knows), the fraudster can coax this information from a real user through compelling phishing campaigns, key logging, or Man-in-the-Middle proxy attacks.

For environments that have deployed Two Factor Authentication (something the user knows, and something the user has), fraudsters are now using enhanced malware installed on the victim’s system. This enhanced malware can stay dormant until the real user has completed the Two Factor Authentication, and then simply hijack the authenticated session. Once the session has been hijacked, the fraudster has the same access as the real user, allowing them to change contact information, change passwords, create new payees, and initiate funds transfers.

Financial Institutions have worked hard to create a trusted relationship with their customers. Users assume their Financial Institution is providing a safe online banking solution. Failure to meet this expectation will result in both hard losses in the form of fraud, but also a damaged relationship with the customer, and potential damaged brand reputation for the Financial Institution. While there is no single solution to combat every threat, Digital Insight has documented the most common threats that lead to fraud, and offers effective mitigation controls for each identified threat. It is incumbent upon each Financial Institution to adopt all of the available controls to effectively reduce fraud for their users.

To combat these threats, we all have a role to play. Financial Institutions need to update their security controls as outlined in this document, and educate their end users about how to implement these controls. The end users of the online banking systems should put into practice the recommendations communicated to them by their Financial Institution. As the threat landscape evolves, so too must the controls that mitigate the risks.

A. Compliance
In late 2006, the Federal Financial Institutions Examination Council (FFIEC) published a handbook outlining security recommendations and best practices. This provided the first direction by the US. government in defining reasonable security standards with which Financial Institutions were required to comply. The FFIEC also instructed regulators and examiners to include these measurements when determining the passing status of the bank or credit union examination.

Financial Institutions must also address the uniform Commercial Code, Article 4A, which addresses fraud transfers, other than consumer transactions governed by the Electronic Fund Transfer Act of 1978. Though article 4A is written from the standpoint of the Financial Institutions and gives them a “safe harbor” from losses associated with wire, ACH, or other fraud, Financial Institutions are required to meet three conditions: (i) The bank and its customer agree to use a particular procedure for verifying the authenticity of wire transfer orders, (ii) The bank must provide a “commercially reasonable method of providing security against unauthorized payment orders” to the customer, and (iii) The bank followed the procedures in good faith compliance with agreement and instructions of the customer. This last statement refers to the security tools, policies and procedures of the bank, in short, the security controls and best practices.

On June 28, 2011, the FFIEC issued a Supplement to the Authentication in an Internet Banking Environment guidance. The Supplement reflected the FFIEC's view that the controls in its previous guidance have become less effective over time.

Specifically, the Supplement:

- Outlines minimum layered security control elements for online banking activities; and
- Sets forth specific minimum elements that should be part of an institution’s customer awareness and education program.
Combating Compromised Credentials

Digital Insight has two primary goals for security: establish that the end-user authenticating is correct, and determine the online operations we process are what the user intended. The goal of authentication is to unequivocally verify the user’s claimed identity.

There are three main factors used for authentication:

- Something the user knows (e.g. passwords).
- Something the user has (e.g. physical token).
- Something the user is (e.g. biometrics).

When an authentication system uses more than one factor of authentication, the system has a higher assurance that the user authenticating is the correct and intended user of the account. Due to the highly sensitive nature of financial transactions, Digital Insight provides Multi-Factor Authentication.

A. Password Security

A password represents a shared secret between the end user and the system they are authenticating. The system cannot differentiate the real user from another user who also knows the password. For this reason it is essential that users keep their password private.

A well chosen password has two important characteristics; it should be easy to remember, and hard to guess - a password that has to be written down is not strong, no matter how many principles of a good password are applied. Users should be advised not to write down the password anywhere.

Below is an example of a more secure password:
Mpis4y2!
- At least 8 characters in length
- At least one numeric digit
- Use of upper and lower case
- Use of special characters
- Not a word in the dictionary
- Not easily guessed
- Can be easily remembered as an acronym: My password is secure 4 you 2!

Adding another character increases the time required to crack the password almost 100 times.

Below is an example of a less secure password:
Password1
- Is based on a word in the dictionary, Password1 is among the top 630 most used passwords and can be cracked instantly using a dictionary attack.
B. Enhanced MFA (EMFA)
Digital Insight enhanced multi factor authentication solution conforms with the latest FFIEC authentication guidelines. After successfully authenticating using a username and password (something they know), a One-Time Password (OTP) is sent to the user’s phone (something they have). The user must then enter this OTP into the banking application to complete the login.

The user may receive this OTP via a voice call or text message. EMFA provides a secure, low-cost and easy-to-use second factor of authentication. EMFA reduces the risk of credential exposure due to phishing, keystroke loggers, Man in the Middle, and brute force attacks.

Mobile Banking
Digital Insight offers mobile banking solutions for Android, iOS (iPhone) as well as a web interface optimized to run on mobile devices. All data exchanged between Mobile Web and Mobile Apps (iOS and Android) with Digital Insight servers is protected in transit using SSL/TLS. In mobile web, no customer information is stored or cached in the device. Sensitive data that is stored in Mobile Apps use the device’s secure storage.

Following the FFIEC guidance, out-of-band multi-factor authentication and complex device identification is present in all mobile offerings.

The iOS application is developed in Objective C and compiled with stack smashing protection and Address Space Layout Randomization (ASLR) enabled. The stack smash protection enhances the security of executable programs by detecting buffer overflows on stack-allocated variables, preventing the coding flaw from becoming serious security vulnerability.

ASLR randomly arranges the positions of key data areas of a program, including the base of the executable and the positions of the stack, heap, and libraries, in a process’s address space. The goal of ASLR is to prevent an attacker from reliably jumping to a particular exploited function in memory.

Combating Local Malicious Software and Phishing
A. Trusteer’s Browser Security
Man-in-the-Browser (MitB) malware allows a fraudster to not only steal passwords and user IDs, but also modify the communication between the browser and the banking application. The malware can rewrite the account and payment instructions (such as the payee and amount), without the user’s knowledge, in real time. Fraudsters have been targeting small businesses, as they typically have fewer security controls, yet still have enough money in the account to be attractive.

Digital Insight’s partnership with Trusteer provides an end-user system security control to combat MitB. Trusteer Rapport, is an anti-malware solution that isolates the browser process from other processes on the system. In addition, Rapport provides a violation report and alert feature that informs your institution of logged Trojan attempts so you can monitor your user base infection rate.

Rapport is a critical security control used by many leading Financial Institutions that can reduce the risk of losses from MitB based attacks. This offering is strongly recommended for all customers given the nature of the attacks, but it is particularly crucial for users with Wire and ACH transaction features.

B. VeriSign Extended Validation Certificates
Digital Insight offers the highest level of extended validation certificates, Secure Site Pro with Extended Validation SSL Certificates by VeriSign. These certificates provide a 128-bit encrypted connection between the user’s browser and the web services. All information in transit between the client and server, including cookies, is transmitted encrypted. Extended Validation (EV) Certificates provide visual indicators, including a green address bar and padlock at the header of the browser provides assurance to users that they are at the correct website. user training for EV Certificates is available online at the site: https://www.staysecureonline.com.
C. RSA Fraud Shutdown
RSA’s Fraud Shutdown Service pro-actively monitors the web for your brand. In the event that your organization is subject to a phishing attack, RSA will work with ISP’s and law enforcement to shutdown the servers hosting the phishing site. Both the VeriSign EV certificates and RSA’s fraud shutdown are essential controls against phishing attacks, which have become more dangerous over the last year.

D. Limits
Organizations should establish limits that restrict the dollar amounts allowed for a Wire or ACH transaction. Creating such dollar limits can reveal attempts to violate those limits and reduce single loss expectancies for your customers. Limits may be established at the customer, user, or transaction level. Because this is a business decision as well as a risk matter, you must decide what level of transaction risks you are willing to take. A recommended approach to this is to monitor the customer’s transaction behavior and determine what is suitable.

Training & Best Practices
The changing mind-set of consumers and businesses toward their safety while online makes the role of education essential. Your trusted relationship depends on the strength of customer confidence in your online site and goes beyond the online experience. Digital Insight can provide you with Privacy and Protection materials you can post on your website. These materials were designed to provide your users with clear, understandable security best practices.

Moreover, we encourage you to engage your customers and members with security guidance whenever possible. Some of the approaches include:

1) Online discussion forums and social networking sites for your Financial Institution.

2) Alerts and notifications on key security tips.

3) Quick tips for the Financial Institution’s customer service teams to pass along during a support interaction.

4) Community roundtables and talks whereby you can provide end-user best practices, such as those noted in the Password Security section of this document and the Privacy and Protect materials.

5) Include dedicated sections for security feedback in your message boards to allow customers a voice.

Recent research has shown that as many as 82 percent of online users expect to participate in security. This is an opportunity to make security part of your trusted brand and to involve users in the process. Additionally, well informed users can aid in their adoption and support of your security controls and policies.

Your institution should establish written policies for Wire/ACH Sales manager training that emphasizes security, customer awareness and the importance of security controls. You should also require written disclosure and acknowledgement by an officer or owner of the business that they have read, understand and agree to implement all security practices. Commercial clients should be informed of best practices for them and how you can help via your security offerings as well as policies they can employ to protect themselves.

The following is a list of best practices for your commercial clients, which can act as a guideline for your recommendations to them:

• Monitor accounts frequently (daily as a best practice). Immediately review Wire, ACH or other transaction confirmations.

• Implement dual controls and approval for ACH and Wire transfers so that dual approval is required before the transaction is initiated at the Originating Depository Financial Institution (ODFI).

• Never share user IDs, passwords, Pin numbers, dynamic tokens, etc. with anyone. Do not leave them in an area that is not locked/secured.

• Do not use the same login or password on any other website or software.

• Obtain and install endpoint protection (antivirus, anti-malware, anti-spyware and firewall software) and make sure it is active and automatically updated by the vendor, or take necessary steps to keep it updated.
• Consider a dedicated computer, live CD or virtual machine for online banking that is never used for e-mail or general internet browsing/surfing.

• Password protect mobile devices utilizing mobile banking and mobile web online banking.

• Educate all company/entity personnel on good cyber security practices, clearing the Internet browser's cache before and after visiting the Financial Institution's website, to avoid having malware installed on a computer.

 » e.g., if a media player needs to be updated, go to the official media player website to install the update. Clicking on a fake update installation link could just mask a hacker downloading malware onto the computer.

• Verify use of a secure session. ("https://" and not "http://"). Ensure no error messages are displayed and the address bar turns green.

• Avoid saving passwords to a computer.

• Utilize dual control for financial institution administrators that are able to download ACH and Wire files; consider limiting the number of employees allowed access to this functionality.

• Never leave a computer unattended when using any online banking service, and always lock your computer when away.

• Never access the Financial Institution's website for online banking (or any privileged or sensitive computer system) from a public computer at a hotel/motel, library, coffee house or other public wireless access point.

• Be suspicious of any employment position that requires use of a personal account for business purposes. Such offers for employment as a mystery shopper, payment processor, etc., where you are required to use your personal account for someone else's business purposes, are not legitimate.

 » No legitimate business will attempt to move business funds through anyone's personal account, and you should educate yourself on these issues.

 » If you are approached to participate in such schemes, immediately contact local law enforcement, the FBI or the Secret Service to let them know.

Action Plan

Now that you have reviewed various security controls and recommended best practices it is important to consider these controls as they relate to your risk assessment and specific business needs. Below is a summary of some security threats and controls.

• Phishing: Technique used by fraudsters to acquire username, password and other sensitive information through social engineering by masquerading as a legitimate website, message or other communication. Credentials are generally captured and sent to a command control service then used or resold for later use by criminals.

 » Enhanced Multi factor Authentication

 » VeriSign Secure Site Pro with Extended Validation SSL Certificates

 » Trusteer Rapport

 » RSA Online Fraud Shutdown

• Password Compromise: Attempts to ascertain passwords from data stored or communicated to your online services. Common approaches of guessing passwords are now done programmatically by sophisticated algorithms including dictionary attacks that experiment with common word usage.

 » Enhanced Multifactor Authentication

 » Complex password policies

 » VeriSign Secure Site Pro with Extended Validation SSL Certificates

• Crimeware Trojans: Malicious code designed to steal funds in real-time without the user's knowledge. These Trojans lay dormant on the user's machine until the user authenticates an online session.

 » Endpoint Security products (e.g. Antivirus, anti-malware)

 » Trusteer Rapport

 » Third Party Alerting
When planning your approach make sure to include communication activities with information regarding all of the security techniques you choose to employ. This should be approached as part of an education and awareness effort, but should also disclose and inform users of your security policies, procedures and controls. Moreover, you must get written acknowledgement of users' understanding and agreement of use.

In summary, the most effective control against fraud is a well-informed user. The benefits to your organization are not just a reduction in risk, but also a foundation for a trusted relationship which not only defines their online experiences but goes beyond it.

Glossary

Authentication Factors
There are three main factors used for authentication:

- Something the user knows (e.g. passwords)
- Something the user has (e.g. physical token)
- Something the user is (e.g. biometrics)

For an authentication solution to be considered multi-factor, it must have two or more different factors included. Supplementing the user-name + password with a challenge question is multi single-factor, not multi-factor.

Key Logging
Key loggers monitor what is being typed at keyboards, and what mouse movements or clicks are being generated. Key loggers come in hardware and software versions. A fraudster can go through the logs looking for account credentials and answers to challenge questions. Sophisticated software key loggers can also capture what is displayed on the screen.

Man-in-the-Browser (MitB)
Man-in-the-Browser (MitB) attacks move the proxy function of a Man-in-the-Middle (MitM) attack from an external application into an extension of the browser itself. In essence, MitB is a sophisticated variation of MitM.

In a MitB attack, the fraudster still has visibility into all data sent or received. Fraudsters can still collect login, password, and challenge question information. Additionally, fraudsters can use the already authenticated session to independently navigate the site, adding new payees or initiating funds transfers, without displaying any of their activity to the browser screen.

For sites that use Multi-Factor Authentication, the MitB can stay dormant until the user initiates an action the fraudster is interested in, such as adding a new payee. At the time the new payee is added, the MitB can alter the data being sent to the banking site, while still displaying what the user entered back to their browser screen.

For example, user adds account #12345 as a new payee. MitB alters what is sent to the banking site to account #31254. User is prompted for a One Time Password (OTP). User receives OTP via SMS, user enters OTP into browser to authenticate the payee addition. The confirmation page on the user’s screen shows payee #12345 successfully entered, while the banking application actually has a new payee of #31254.

Man-in-the-Middle (MitM)
In a Man-in-the-Middle (MitM) attack, users believe they are interacting directly with a real banking site, when in reality there is a proxy function that is intercepting, manipulating, and forwarding the data between the user's browser and the real banking site.

Multi-Factor Authentication
Multi-Factor Authentication enhances the authentication process by adding an additional factor to be validated. Generally accepted authentication factors include, something the user knows (shared secret), something the user has (physically in possession of), or something the user is (biometrics).

Typical multi-factor authentication in online applications pair something the user knows with something the user has. For example, many Financial Institutions issue a hardware token that generates a time bound One-Time-Password (OTP) as a secondary factor. If a fraudster knows the username and password for an account, but does not possess the hardware token, they are not able to authenticate.

Multi-Factor Authentication mitigates compromised user credentials, password reset attacks, phishing attacks, key logger attacks, and some MitM attacks.

Out-of-Band Communication
Out-of-Band (OOB) communication is messaging sent to a user in a separate channel than the web browser. OOB Communication provides a secure messaging channel separate from a potentially compromised desktop system.
Password Policy
The main components of a password policy involve the password space, the lifetime of a password, and the rate at which passwords can be guessed. All of these components are configurable by an FI administrator.

S: The password space is determined by the total number of characters in the password alphabet, and the length of the password. For example, a 6 digit, alpha-numeric password has a password space of 366.

L: The lifetime of a password determines how frequently a user must change their password. For the example below, we will assume 120 days.

R: The rate at which an attacker can guess a password is controlled by how many consecutive failed logins are permitted before automatic account lock out. If we assume an auto lockout after 3 consecutive failed attempts, and further assume that the real user logs in on average once per day, we can assume a rate of 2 guesses per day.

P: The percentage of the password space that can be exercised (brute forced), given the password length, the alphabet size, the lifetime of the password, and the rate at which guesses can occur can be expressed as: \(P = \frac{L \times R}{S} \)

In the case of a 6 digit alpha-numeric password, with a 120 day lifetime, and a 3 failure auto account lock out, a brute force attempt will only get through 0.000011% of the password space.

Password Reset
On some sites, the password for a user can be reset if certain challenge questions are correctly answered. In many cases the answers to the challenge questions are easier to guess than the original password.

Phishing
In a phishing attack, fraudsters create a website that impersonates a real banking site. The fraudsters lure users to this impersonation site where the user will try to authenticate. Once credential information is entered, the fraudster can use this information to log into the real banking site.

Single-Factor Authentication
Most applications support single-factor authentication; something the end user knows (username and password). Many banking applications require a set of challenge questions to enroll a new system. Since a challenge question is also answered by something that the user knows, it is not a second factor. The application keeps track of which sessions have been authenticated.